549 research outputs found

    Wavelength tunable transmitters for future reconfigurable agile optical networks

    Get PDF
    Wavelength tuneable transmission is a requirement for future reconfigurable agile optical networks as it enables cost efficient bandwidth distribution and a greater degree of transparency. This thesis focuses on the development and characterisation of wavelength tuneable transmitters for the core, metro and access based WDM networks. The wavelength tuneable RZ transmitter is a fundamental component for the core network as the RZ coding scheme is favoured over the conventional NRZ format as the line rate increases. The combination of a widely tuneable SG DBR laser and an EAM is a propitious technique employed to generate wavelength tuneable pulses at high repetition rates (40 GHz). As the EAM is inherently wavelength dependant an accurate characterisation of the generated pulses is carried out using the linear spectrogram measurement technique. Performance issues associated with the transmitter are investigated by employing the generated pulses in a 1500 km 42.7 Gb/s circulating loop system. It is demonstrated that non-optimisation of the EAM drive conditions at each operating wavelength can lead to a 33 % degradation in system performance. To achieve consistent operation over a wide waveband the drive conditions of the EAM must be altered at each operating wavelength. The metro network spans relatively small distances in comparison to the core and therefore must utilise more cost efficient solutions to transmit data, while also maintaining high reconfigurable functionality. Due to the shorter transmission distances, directly modulated sources can be utilised, as less precise wavelength and chirp control can be tolerated. Therefore a gain-switched FP laser provides an ideal source for wavelength tuneable pulse generation at high data rates (10 Gb/s). A self-seeding scheme that generates single mode pulses with high SMSR (> 30 dB) and small pulse duration is demonstrated. A FBG with a very large group delay disperses the generated pulses and subsequently uses this CW like signal to re-inject the laser diode negating the need to tune the repetition rate for optimum gain-switching operation. The access network provides the last communication link between the customer’s premises and the first switching node in the network. FTTH systems should take advantage of directly modulated sources; therefore the direct modulation of a SG DBR tuneable laser is investigated. Although a directly modulated TL is ideal for reconfigurable access based networks, the modulation itself leads to a drift in operating frequency which may result in cross channel interference in a WDM network. This effect is investigated and also a possible solution to compensate the frequency drift through simultaneous modulation of the lasers phase section is examined

    Continuous repetition rate tuning with timing window independent self-seeding of a gain-switched Fabry-PÉrot Laser

    Get PDF
    In this work, we propose a novel self-seeding technique that yields timing window independent operation allowing continuous repetition rate tuning of the self-seeded gain-switched (SSGS) laser. This is achieved by employing a highly linearly chirped fiber Bragg grating (LC FBG) as a wavelength selective element. The reflected gain-switched pulses are dispersed to such an extent, that temporal overlap occurs between them. This overlap creates a pseudo continues wave like signal that is re-injected into the gain-switched laser

    Wavelength tunable lasers in future optical communication systems

    Get PDF
    Monolithic tunable lasers (TL) have been an important component in dense wavelength division multiplexed (DWDM) systems mainly because of their ability to reduce inventory costs associated with different part numbers for fixed wavelength distributed feedback (DFB) lasers. Moreover, the use of wavelength agile laser diodes in DWDM networks has gained a lot of interest in recent years, due to emerging new applications such as optical switching and routing, which require fast switching lasers in the nanosecond regime (Coldren et al., 2000). Employment of such lasers as tunable transmitters in wavelength packet switched (WPS) networks is one of the possible applications of these devices. In such systems, the information to be transmitted could be encoded onto a destination dependent wavelength and the routing of traffic could be performed on a packet-by-packet basis. The utilization of TLs in an optical switching and routing environment would put stringent requirements on its performance. This would include increased tuning range, high side mode suppression ratio (SMSR), reduced switching time and excellent wavelength stability. The sampled-grating distributed Bragg reflector (SG DBR) TL proves to be an ideal candidate, due to its large tuning range (40 nm), high output power (10 dBm), high side mode suppression ratio (SMSR > 30 dB) and simplicity of integration

    Frequency drift characterisation of directly modulated SGDBR tunable lasers

    Get PDF
    Tunable Lasers (TL) are rapidly becoming key components in Dense Wavelength Division Multiplexed (DWDM) systems, packet switched schemes and access networks. They are being introduced as alternatives to fixed wavelength sources to provide a greater degree of flexibility and to reduce large inventory [1]. The SGDBR laser is an ideal candidate due to its large tuning range (40 nm), high output power (10 dBm), large Side Mode Suppression Ratio (>30 dB) and its ability to be monolithically integrated with other semiconductor devices. Such integration could comprise of a Semiconductor Optical Amplifier (SOA), allowing for extended reach tunable operation, in a very compact and low cost footprint [2]. Thus far, external modulation has been the most popular modulation technique used with TLs. However, the addition of the modulator introduces loss to the transmitted signal due to high insertion and coupling losses. Addressing these short comings would result in increased cost and complexity of the transmitter. Alternatively, direct modulation is one of the simplest and cost efficient ways to modulate the lightwave signal. Hence, it is rational to investigate the performance of a directly modulated SGDBR laser in order to verify its usefulness in a WDM based access network scenario. Previous work in this area has mainly focused on bandwidth characterisation and transmission experiments [3, 4]. In this paper, we characterise the frequency drift associated with a directly modulated SGDBR laser incorporating a wavelength locker. Focus is placed on investigating the magnitude and settling time of this drift. In addition, we also demonstrate how the frequency drift has a detrimental effect on DWDM system performance when the modulated channel is passed through a narrow Optical Band-Pass Filter (OBPF) centred at the target emission frequency

    Triple-wavelength fiber ring laser based on a hybrid gain medium actively mode-locked at 10 GHz

    Get PDF
    A fiber ring laser based on a hybrid gain medium that produces three simultaneously mode-locked wavelength channels is presented. The lithium niobate based modulator used to actively mode-lock the laser cavity at 10 GHz is birefringence compensated to reduce its polarization sensitivity. A Lyot filter defines the lasers multiwavelength spectrum which has a wavelength spacing of 1 nm. The polarization sensitive nature of the laser cavity and its affect on the performance of the laser is discussed

    Characterization of wavelength tunable lasers for future optical communication systems

    Get PDF
    The use of tunable lasers (TL) in dense wavelength division multiplexed (DWDM) networks for optical switching, routing and networking has gained a lot of interest in recent years. Employment of such TLs as tunable transmitters in wavelength packet switched (WPS) networks is one of the possible applications of these devices. In such systems, the information to be transmitted could be encoded onto a destination dependent wavelength and the routing of traffic could be performed on a packet-by-packet basis. The authors investigate the possibility of using TLs in DWDM WPS networks by focusing on the characterisation of the instantaneous frequency drift of a TL due to wavelength tuning and direct modulation. Characterization of the linewidth of the TLs is also presented to verify the feasibility of using TLs in systems employing advanced modulation formats

    Iron ooid beds of the Carolinefjellet Formation, Spitsbergen, Norway

    Get PDF
    Iron ooid beds are unusual deposits that have been linked to greenhouse conditions and the transgressive flooding of shallow shelves, and which were globally prevalent during certain periods. Within the marine, Aptian-Albian, Carolinefjellet Formation of Spitsbergen, chamosite ooids have been found within distinctive sandstone beds at six localities, and at a consistent stratigraphic position within the basal Dalkjegla Member. Distinctive characteristics include the iron ooids themselves, a coarser grain size, intercalation with silty siderites, grading, cross-beds indicating offshore or longshore transport, and a lack of burrowing. The enclosing sands display planar and hummocky crossstratification and abundant oscillation ripple marks, and are interpreted as lagoon-attached bar complexes. The stratigraphic position and traits of the iron ooid sands are consistent with seaward storm transport and preservation within interbar swales. Ooids vary in shape considerably, and display evidence for multiple growth events. Nuclei of quartz, opaques, carbonate clasts and laminated crusts are typically encircled by finer grained tangential chamosite and opaque laminae, sometimes with outer overgrowths of calcite and/or radial chamosite. The Dalkjegla Member is the marine portion of a large-scale transgressive tract, attached to underlying fluvio-estuarine Helvetiafjellet Formation strata. A lagoonal environment associated with the basal shales of the Dalkjegla Member represents a logical setting, where riverine iron concentration and iron silicate growth could occur. The Spitsbergen iron ooid beds extend the known occurrence of Cretaceous examples, representing a less common High-Latitude example, and one not directly associated with a transgressive flooding surface

    Characterization of frequency drift of sampled-grating DBR laser module under direct modulation

    Get PDF
    The authors demonstrate the drift in frequency of a static sampled-grating distributed Bragg reflector (SG DBR) laser module when it is subjected to direct modulation. The magnitude of drift and its settling time is characterized as a function of the index of modulation. Results show that when the directly modulated SG DBR is optically filtered, as in a dense wavelength- division- multiplexed system, a power penalty of 6.7 dB is incurred in comparison to the unfiltered case

    80-Gb/s OTDM system analysis of a vertical microcavity-based saturable absorber for the enhancement of pulse pedestal suppression

    Get PDF
    In future high-speed optical time-division-multiplexed (OTDM) systems, an important factor that needs to be considered for optical pulse generation schemes is the impact of pulse pedestals on the overall system performance. The results presented in this letter are two-fold; first, the impact due to the height of pulse pedestals in an 80-Gb/s OTDM system are established. Second, a solution is provided to overcome these high pedestal levels through the use of a vertical microcavity saturable absorber, which can significantly reduce the pulse pedestal level and give enhanced system performanc

    Petrography of Lower Cretaceous sandstones on Spitsbergen

    Get PDF
    The sandstone petrography of sample suites from four sites spanning the Rurikfjellet (Hauterivian) to Carolinefjellet (Aptian–Albian) formations in central Spitsbergen was investigated. The sandstones show a distinct stepwise shift in composition from quartz arenites to sublitharenites and lithic arenites, typically within the upper part of the Helvetiafjellet Formation. This shift is related to the introduction of 10 - 25 % (grain %) plagioclase grains and volcanic lithics, and a notable increase in basement and sedimentary lithics. Quartz grain character also changes, and grain shapes become more varied. The shift is also associated with the transgressive arrival of marine sediments in the area, and the introduction of sands from the east-northeast by shore-parallel transport. Regional regression and subsequent transgression, and the change in sandstone composition is attributed to the development of the High Arctic Large Igneous Province in the region. The relative constancy of sand composition and volume of volcanic detritus within the Carolinefjellet Formation suggests long term (≈ 20 M) stability of the sediment system and a large volcanic source area, consistent with LIP (Large Igneous Province) derivation, along with significant exposure of basement rocks. Sample spacing and sediment recycling and mixing do not allow detection of events that would have changed sandstone composition that were less than ≈ 1 M duration. Preservation of significant amounts of plagioclase in a sediment-starved shelf can be explained by relatively cold climatic conditions
    corecore